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Double-diffusive convection is studied for the case where a large coupled diffusion 
(or cross-diffusion) effect is present. The Soret effect is a familiar example of this 
cross-diffusion where the flux of the solute depends not only on its own spatial 
gradient but also on the in situ temperature gradient. The linear stability analysis 
of double-diffusive convection has been extended to include the two cross-diffusion 
flux terms and i t  has been shown that, with a sufficiently large coupled diffusion effect, 
fingers can form even when the concentrations of both components make the fluid’s 
density gradient statically stable. The conditions under which the diffusive instability 
can occur are compared with those for the formation of fingers and i t  is shown that 
these two types of double-diffusive convection cannot occur together in any particular 
set of linear property gradients. We then consider finite-amplitude, steady, infinitely 
long fingers and show that a sufficiently large cross-diffusion effect can again allow 
fingers to exist when the concentrations of both solutes increase with depth. It is also 
shown that the diffusion of properties from an initially sharp interface may set up 
vertical gradients that  are favourable for the formation of fingers. 

1. Introduction 
Salt fingers occur in the ocean when hot saline water overlies cooler fresher water 

and they are now believed to play an important role in the mixing of properties in 
several regions of the ocean (Williams 1981 ; Schmitt & Georgi 1982). The fingers form 
a pattern where each upward-moving finger is surrounded by downward-moving 
fingers and vice versa. The downgoing fingers lose heat to the upgoing fingers, making 
the downgoing fingers more dense and the upgoing fingers less dense. It is this density 
difference that maintains the motions against the retarding viscous forces. Because 
the molecular diffusivity of salt is much less than that of heat, very little salt is 
transferred between the fingers; this is indicated in figure 1 by the small vertical 
salinity gradient in both the up and downgoing fingers. The density profiles sketched 
in figure 1 show that the downgoing fingers are more dense than the upgoing fingers 
and that the mean density gradient through the fingers is hydrostatically stable. 

The extra effect we consider here is that of the coupled fluxes of the two properties 
due to  irreversible thermodynamic effects. The Soret effect is an example of this 
cross-diffusion where a flux of salt is caused by a spatial gradient of temperature. 
The corresponding flux of heat caused by a salinity gradient is called the Dufour effect 
and in liquids is a very small effect indeed, so that we can treat the heat-solute 
property pair as possessing only one cross-diffusion term, namely that due to the Soret 
effect. When considering the isothermal coupled diffusion between a solvent and two 
solutes (called ternary diffusion) we need to include two cross-diffusion effects because 
each property gradient has a significant influence on the flux of the other property. 
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Double-diffusive convection 381 

the impact of the cross-diffusion terms on the stability boundaries. We then take the 
model of Huppert & Manins (1973) of very long fingers and extend i t  to include the 
two cross-diffusion terms. This leads to the conditions under which fingers can not 
only form initially, but can continue indefinitely in particular property gradients. 
Finally we consider the gradients of properties that occur during diffusion from an 
initially sharp interface between two fluids and we discuss the conditions under which 
fingers can form in this situation. Our initial motivation for this work was the striking 
photographs of fingers in Preston et al. (1980), where the diffusion of a solution of 
macromolecules was studied. The distribution of the polymers was not obviously 
conducive to ordinary double-diffusive finger convection and so we advance an 
explanation in terms of the cross-diffusion fluxes. 

2. Linear stability analysis of double-diffusive convection with 
cross-diffusion terms 

We consider fluid confined between two horizontal porous plates which maintain 
a contrast in fluid properties between the plates of AT and Ah'. For the purposes of 
this paper we consider both T and S to be solute concentrations (weight of solute 
per unit weight of solution) and that positive AT and AX imply that the concentrations 
are greater a t  the lower plate. We consider only two-dimensional instabilities from 
a rest state that  has uniform T and S gradients between the plates. The equations 
for the conservation of T and S are 

aT - at + U . VT = D,, V2T + D,,V2S, 

as 
at 
-+U . VS = D,,V2S+ D,,V2T, 

where D,, and D,, are the two cross-diffusion terms and U is the two-dimensional 
velocity vector. The property T is assumed to have a larger diffusivity than 8, that  
is D,, > D22.  The Navier-Stokes equation for the momentum conservation is 

au 1 P -+u.vu = - -Vp+g-++V2U. 
at Po Po 

(3) 

Here g is the gravitational acceleration, directed vertically downwards, po is the 
reference density and p is the fluid density, given by 

p = po(l + a T + p S ) .  (4) 

Taking x as the horizontal spatial coordinate and z as the vertical coordinate (defined 
positive upwards), we define a stream function @ by 

By taking the curl of (3) we obtain (after dropping small second-order quantities) 

a aT as 
- (V@) = UVZ(V2@) + ga-+ g p - .  at ax ax 

We now introduce non-dimensional variables in the usual way so that the deviations 
of T and S from linear vertical gradients -AT/d and -ASld (where d is the 
separation of the plates) are normalized by AT and A 8  respectively and the timescale 
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is d2D;,'. Equations ( l ) ,  (2) and (6) are now expressed in terms of the dimensionless 
variables (the dashed variables are dimensionless) 

where the Prandtl number (T = v/D,,, the Rayleigh number R = gaATd3/D,,v and 
the solutal Rayleigh number R, = g/3ASd3/D,,v in terms of AT, AS and d. 

We seek solutions t o  (7)-(9) of the form 

$-' = $o sin (naz') sin (nnz') e@', (1Oa) 

which has the correct form to satisfy the equations, and when n is an integer (10) 
represents a free-slip boundary condition a t  t,he two plates. We substitute (10) into 
(7)-(9) and e1iminat)e $o, To and So to obtain a cubic equation for the growth rate p :  

where k2 = n2(a2 + n2) and T = D2,/D,,  < 1 .  We form an equivalent Rayleigh number 
Re and an equivalent solutal Rayleigh number Rg such that the curly brackets in 
the cubic equation are equal to their normal (i.e. if D,, = D,, = 0) expressions in terms 
of Re and Rg. That is 

Re+RZ = R+R,--- k6 D12D21 - = R$-R,-A, 
(ma), UD?, 

k6 D,,D,, D,, AS D,, AT 
(na)2 Ofl D,,AT D,,  A S  

7Re+Rg = TR+R~---------- R----Rs 

E TR+R,-B, 

where we have defined the two shorthand symbols A and .B. The equivalent Rayleigh 
numbers are then 

B - A  
Re = R+- 

1-7 ' 

TA-B 
1 - 7  

RZ = R,+-. 

By setting the growth rate p to be purely imaginary the conditions required for 
double-diffusive convection are obtained. These conditions are well known for the 
normal situation where D,, = D,, = 0 and the stability boundaries are lines in the 
(R,  R,)-plane. With coupled diffusion, these same stability boundaries apply when 
drawn in the (Re, Rg)-plane. 
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2.1. Conditions for the onset of the 'Jinger' instability 
For the formation of fingers in our geometry, the normal requirements of double- 
diffusive convection are 

R," < 0,  Re > 0, -R," > ~ R ~ i - 9 ~ ~ 7 ,  (16) 

where the factor $n4 is equal to  k6/(na),  a t  the most-unstable values of n = 1 ,  
a = 2-4. I n  terms of the physical Rayleigh numbers, the third inequality in (16) 
becomes 

Now for R > 0 ,  that is for the density gradient due to the faster-diffusing component 
uT, negative and therefore statically stabilizing, this expression becomes 

-R, > 7(R+$k4)-B. 

where PSz/aT, is simply R,/R. For R < 0, that is aT, > 0, the above inequality is 
reversed. Hydrostatic stability is assured by R, + R > 0, that is aT, +PSz < 0, and 
with this constraint it can be shown that the inequality (17)  for the formation of 
fingers is more restrictive than the two other conditions of (16) ,  namely RE c 0 and 
Re 2 0. I n  most situations $n4 is small in comparison with a typical Rayleigh number 
and so the right-hand side of (17)  is approximately zero. 

The normal condition for fingers to form without cross diffusion is readily recovered 
from (17). I n  this case PS, > 0, aT, < 0 and the well-known condition is I/3Sz/aT,I > 7 .  

The presence of the cross-diffusion terms changes this criterion to 

This shows that a positive D,, (that is, where the flux of the more slowly diffusing 
component S is augmented by the T-gradient) encourages the appearance of fingers, 
whereas a positive D,, discourages their occurrence. 

We now briefly turn our attention to the specialized initial conditions created in 
a Rayleigh-BBnard-type experiment that  has two horizontal boundaries that are 
impervious to the &-property, but between which a constant difference of the 
T-property is maintained. We investigate the stability when the vertical flux of S 
is zero at all depths and so R and R, are directly related (from (2)) by 
R,/R = -/3D,,/aD,,. Substituting this relation between R, and R into ( 1 7 )  we obtain 

PD2l; 7 +-- 1 D,,D,, +--(1---) 27 n4r D,,D,l 
aD,, 1+7 ( ~ + T ) D ~ ~ D ~ ~  4 R(i+7) D D,, 

as the condition for a particular type of finger perturbation to grow in this geometry. 
This is an extension of the corresponding conditions of Hurle & Jakeman (1971, 
equation (19)) and Antoranz & Velarde (1979, equation (14)) to include both of the 
cross-diffusion terms, and is the relevant condition for perturbations which see 
perfectly conducting and permeable boundaries where the imposed values of T and 
S are maintained. For large R (in relation to $n4 = 657), (19) reduces to 

Since impervious boundary conditions are assumed to  give rise to the S-gradient but 
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1 ,  
-(u + 7 )  

Stable 

Diffusive 

/ / /  / 

u +  1 
T 

\ 

( 6 )  

FIQURE 2(a ,  b ) .  For caption see facing page. 
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(C) 

FIQURE 2. Sketch of the stability boundaries as a function of/?D,,/aD,, and aD,,/PD,, for the three 
different ranges of aT, and PS,. (a) has aT, < 0 and PS, < 0 (i.e. both components stably 
distributed); ( b )  has aT, < 0 and PS, > 0 (i.e. an apparently ‘finger’ property distribution); (c) has 
aT, > 0 and < 0 (i.e. an apparently ‘diffusive’ property distribution). 

perfectly permeable boundary conditions are assumed for the instability, (19) and 
(20) are not the accurate conditions for instability. An accurate treatment would 
include both cross-diffusion terms in a normal-mode analysis like that of Antoranz 
& Velarde (1979). Note that usually the Rayleigh number in these ‘ Soret ’ experiments 
is defined in terms of a temperature difference and has the opposite sign to R 
considered in this paper. 

If both T and S are stably stratified (a% < 0 and /3S, < 0) then we see from (17) 
that, as a minimum condition for the formation of fingers, either /3Dzl/aD2, > 1 or 
aDl,//3D,, > 1. We defer a more complete discussion of the constraint (17) until after 
we have considered the model of finite-amplitude steady fingers in $3. 

2.2 .  Conditions for the onset of the ‘diffusive’ instability 
We return now to the cubic equation (1 1 ) for the growth rate p of infinitesimally small 
disturbances and consider the conditions under which the ‘diffusive’ type of 
double-diffusive convection will occur. The well-known conditions for the diffusive 
instability to form in normal double-diffusive convection are 

(a+7) 27n4(1+7)(a+7) 
(a+l )  4 U 

Rg > 0, Re < 0, -Re > RE-+- 

when both the T- and the #-properties are fixed at the free-slip horizontal boundaries. 
In terms of the physical Rayleigh numbers this last inequality is 

, (22 )  
~ + 7  B-A(a+1+7) 27n4(1+7)(a+7) 
a+ l  a + l  4 U 

+- -R > R,-+ 
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and if the cross-diffusion terms B and A are both zero th.en we recover the condition 
for the diffusive instability for ordinary double-diffusive convection. In the special 
initial conditions of a Rayleigh-BBnard experiment with both cross-diffusion fluxes, 
(22) becomes (with RJR = -PDzl/aD2, and R < 0) 

which is the extension of Hurle & Jakeman’s condition for this geometry (their 
equation (21)) when both cross-diffusion terms are important. 

In  the more general situation where aT, and PS, are set independently, we can 
obtain the criterion for the onset of the diffusive instability as (ignoring terms in (22) 
of or mder y7r4) 

It can readily be shown that (24), together with the static stability restriction 
aT,+pS, < 0, implies that  RZ > 0, Re < 0, as (21) requires. In  aqueous solutions 
(T x 7, and in the case where both T and X are stably distributed (24) shows that 
either aD12/PD11 or /3Dz1/aD2, have to be less than - 7  (or even more negative) for 
diffusive convection to occur. 

2.3. A comparison of the cross-daflusion coefficients conducive to the Jinger 
and the diffusive instabilities 

With cross-diffusion coefficients of the appropriate sign and magnitude i t  is possible 
to have finger or diffusive convection when both T and S are stably stratified, to have 
fingers when the properties are distributed in the apparently diffusive fashion and 
to have diffusive instabilities when the gradients are set up in an apparently finger 
distribution. In this subsection we answer the important question of whether the 
conditions for the occurrence of finger and diffusive instabilities can ever be fulfilled 
simultaneously. 

The general condition for the onset of fingers, analogous to (24) for the diffusive 
instability, is 

~ a ~ ( - - l ) + P S ~ ( p u - 1 )  PD21 “Dl2 < 0 
“D22 11 

We now treat aT, and PS, as externally imposed and plot the two inequalities (24) 
and (25) on the axes ,5D2,/aD2, and aD12/PDll, subject to the static stability 
constraint aT,+PS, < 0. Figure 2 shows the regions on these diagrams where finger 
and diffusive instabilities occur for the three possible distributions of aT, and PS,. 
The straight lines through the points ( 1 , l )  and ( - ((T+ 7), - (a+ 1)/7) have the same 
slope for the diffusive and finger criteria in each of figures 2 (a-c). Figure 2 ( a )  has stable 
distributions of both T and X, and the slope of the stability boundaries is negative. 
Figure 2 (b)  has aT, < 0 and PX, > 0, the distribution of properties that is normally 
conducive to fingers, and the slope of the stability boundaries is between 0 and 7-l. 

Figure 2(c) has aT, > 0 and PS, < 0, the distribution of properties that is normally 
conducive to the diffusive instability, and the slope of the stability boundaries is 
greater than 7 - I .  

These stability boundaries show that the two types of double-diffusive instabilities 
never occur together, even though both types of instability can occur in property 
gradients that  are normally conducive to the other type of instability. 
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3. Finite-amplitude finger analysis with the cross-diffusion terms 
Huppert & Manins (1973) present a linear model of finite-amplitude, steady, very 

long salt fingers. The nonlinear advective terms in the Navier-Stokes equation are 
equal to  zero because the motion is assumed to be vertical. We extend this model 
to include the two cross-diffusion flux terms. 

The vertical momentum equation is 

1 dP 
Po dz 

0 = ----g( 1 + aT+PS)  + vV2w 

and the T- and S-conservation equations are 

wT, = D,,V2T+ D,,V2S, 

wS, = D,,V2S+ D,,V2T. 

Since the horizontal velocities are zero, dwldz must be zero, and so V2w in (26) is simply 
V i w  = a2w/ax2+a2w/ay2. The horizontal momentum equations show that p is a 
function of z only, and so from (26) we see that aT+PS must be the sum ofa function 
of z only and a function of x and y only. Assuming that this functional form applies 
to aT and PS separately, we write 

(29) 

(30) 

aT(x,  y, z )  = aT(z) +aT'(x ,  y), 

PSCX, y, 2) = Pf@, +PS'(X> ?I), 

where the overbar means an  average in the horizontal plane and T and S' have a 
zero horizontal average. Substituting these forms for aT and PS into (27) and (28) 
and taking the horizontal average shows that either D,, D,, -D12 D,, = 0 (which we 

a28 
discount) or 

dz2 dz2 . (31) - - o = -  d2T - 

Subtracting (26) from its horizontal average gives 

a T + P S  = -Viw,  (32) 
V 

9 
and (27) and (28) become 

WC = D,,ViT+D,,ViS', 

wgZ = D,,ViX'+ D, ,ViT.  

We seek solutions of these three equations of the form 

( W ,  T, S') = ( W,, T,, So) cos m x  cos n y  

and find upon substitution that 

(33) 

(34) 

(35) 

where k2 = m2+n2. I n  order for fingers to  form, k4 must be positive, and, taking 
D,, D,, - D,, D,, > 0, the left-hand side of (36) must be positive. We consider first 
the case where T is stably stratified (az < 0 ) ,  then fingers will form if 
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and the inequality is reversed if aq > 0. This is the same criterion as (17) except for 
the small term there proportional to 27n4/4R. The gradients T, and S, in (37) are 
the vertical gradients of the horizontally averaged T- and S-fields through an array 
of finite-amplitude steady fingers, whereas the gradients Q and S, in (17) are uniform 
in the horizontal direction and are the gradients that  exist before any fingering sets 
in. Subject to this different interpretation of the verticaJ gradients, the conditions 
required for the maintenance of steady fingers is the same as that for the formation 
of fingers as determined by the linear stability analysis. This same similarity was 
found by Huppert & Manins (1973) for ordinary salt fingers without cross-diffusion 
effects. 

We have deferred until now an extensive discussion of the linear stability analysis 
criterion for finger formation (17)  because of its similarity to the finite-amplitude 
finger criterion (37). We have already considered the two cases where the solutes are 
distributed in the 'normal' fingering fashion (a% < 0,  PA!, > 0) (see (18)) and when 
the S-gradient is set up so as to maintain zero vertical flux of S, such as in a 
Rayleigh-BQnard convection experiment (see (19)). Both of these criteria also apply 
to  the maintenance of finite-amplitude fingers, although, in the second case, the 
salinity gradient is set up on a slow diffusion timescale involving D,, and so the 
presence of fingers will quickly destroy this gradient. More realistic vertical structures 
of the properties T ,  S and @ in this ease have been investigated by Velarde & 
Schechter (1972) using a linear normal-mode analysis when there is only one non-zero 
cross-diffusion coefficient. 

A few comments are in order here about the cross-diffusion coefficients D,, and D2,. 
First, the Onsager reciprocal relationship is often not of practical use in relating D,, 
and D,, as this requires knowledge of the dependence of the chemical potential of 
each species on concentration, and this data is often not available (Miller 1960). For 
the ternary systems that have been studied experimentally, D,, and D,, are often 
quite different. Secondly, the framework of linear irreversible thermodynamics 
applies only for small concentration gradients (or small concentration differences) and 
so it is conventional to  write equations such as ( 1 )  and (2) as though Dl, and D,, 
are universal constants, whereas in reality they should be interpreted as the values 
applicable to the mean concentrations T and s of a particular experiment. Leaist & 
Lyons (1980) have shown theoretically that for small concentrations D,, K !F and 
D,, K S(their  equations (60) and (61)), and experimental data (Leaist & Lyons 1980; 
Wendt & Shamim 1970) have shown agreement with this concentration dependence 
of the cross-diffusion coefficients. 

and f l  are stably stratified ( a z  < 0, 
PR, < 0). It is useful to focus attention on the cases where one of D,, or D,, IS . zero. 
If say D,, = 0, so that cross-diffusion affects the flux of S alone, then (37) can be 

We return to the situation where both 

written as 

and, if D,, = 0 so that cross-diffusion affects the flux of T alone, we have 

For D,, = 0, fingers can form more readily for small @, and large ac, while, for 
D,, = 0, they are favoured by small aq and large @,. As an extreme example, fingers 
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P 

( b )  

FIGURE 3. Sketch of the vertical profiles of aT, PS and p in the centres of up- and downgoing 
(indicated by the arrows) fingers for az < 0, /3gz < 0; that is with both T and S stably stratified. 
( a )  has D,, = 0, and D,, (> 0) satisfies (38); ( b )  has D,, = 0, and D,, (> 0) satisfies (39). 

will form with D,, = 0 with a zero vertical gradient of s i f  /3D,,/uD,, > 1 ,  while, for 
D,, = 0, fingers will appear in a zero vertical gradient of p i f  aD,,//?D,, > 1 .  In  the 
more general case where both D,, and D,, are non-zero, we see from (37)  and from 
figure 2 (a) that the occurrence of fingers is assisted by large positive values of both 
D,, and D,,, and that a t  least one of /3D,,/aD,, and aD,,//3D1, must exceed unity. 

The driving energy for normal fingering motion comes from the unstably stratified 
component S, and this potential energy is released by the rapid diffusion of T between 
the fingers. I n  the fingering motion that we have just described we have shown that 
even if both of the components T and S are distributed in a hydrostatically stable 
fashion, finger convection can still occur if the cross-diffusion terms are large enough 
to satisfy (37) .  The total gravitational potential energy of the fluid decreases owing 
to the fingering, but in this case i t  is the cross-digusion between the fingers that allows 
the release of the gravitational potential energy even though no separate solute is 
unstably stratified. The T-, S- and p-profiles in upgoing and downgoing fingers are 
sketched in figure 3 for the two cases when one of the cross-diffusion coefficients is 
zero. In  figure 3 ( a )  with D,, = 0 the T-concentration of the downgoing fingers 
increases owing to the conduction of T from the upgoing into the downgoing fingers 
in the normal fashion because the T-flux is unaffected by coupled diffusion. The 
S-concentration of the downgoing fingers is also increasing in this case, even though 
a t  each depth the downgoing fingers are more concentrated in S than the upgoing 
fingers. This is caused by the cross-diffusion horizontal flux of S due to  the horizontal 
gradients of T and the large value of D,, which satisfies (38) .  A similar explanation 
applies to the profiles in figure 3 ( 6 )  when D,, = 0 and D,, satisfies (39) .  Here the 
S-profiles are unaffected by cross-diffusion and the T-concentrations of the fingers 
are significantly influenced by the cross-diffusive flux of T. Note that, in both figures 
3 ( a ,  b ) ,  the horizontally averaged density gradient is statically stable ( p ,  < 0) and 
that the downgoing fingers are more dense than the upgoing fingers. 
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The relative magnitudes of the concentration differences between the upgoing and 
downgoing fingers are obtained from (33) and (34) with the substitution (35). In  this 
way we have 

The sign of the vertical velocity W, is given in terms of T, and So by (from (32)) 

pS, (1 +%) = -; V k2W,. 

This equation shows that downgoing fingers (i.e. W, < 0) have a positive density 
anomaly (aT,+pS, > 0 ) ,  as we expect. For given values O ~ T ,  012, D2,  and the vertical 
property gradients a c  and pSz we can evaluate the ratio aT,/PSo, and, using this 
and the above equation, the signs of PS, and aTo can be determined. The fluxes of 
T and S are proportional to W,T, and W,S, respectively, and so once we have found 
the signs of T, and So (in relation to the sign of W,) we can immediately deduce 
whether the fluxes of T and S are down their respective concentration gradients or 
whether they are against these gradients. It is well known in double-diffusive 
convection that the flux of density is always against the density gradient. This general 
result also applies to all the types of fingering motions we describe in this paper 
because the downgoing fingers are always denser than the upgoing fingers, In normal 
double-diffusive convection the fluxes of the individual properties T and S are down 
their respective gradients, but with the cross-diffusion terms this is often not the case. 
For example in figure 3 (a )  the flux of S is against its gradient and in figure 3 ( b )  the 
flux of T is countergradient. 

Another unlikely distribution of property gradients can also lead to fingers. If both 
the T- and the S-gradients are the reverse of those normally required for fingers, that 
is if u c  > 0 and PSZ < 0 (i.e. the distribution of T and S required for the normal 
diffusive instability), the criterion for fingers to exist is now just the reverse of the 
inequality (37), and we can write this in the form 

Here PS,/aq must be less than - 1 for static stability and this is the case depicted 
in figure 2 (c). For small r this condition requires /3D,,/aD,, to be negative and large 
in magnitude, while, for T z 1, it  is not so severe. Rearranging (40) to put D,, on the 
left-hand side. we see that 

For small values of D,,, aD,,/PD,, is required to be greater than some positive 
number which is less than 1 .  Figure 4 shows the gradients of aT and PS for the two 
cases where D,, = 0 with D,, satisfying (40) and D,, = 0 and D,, satisfying (41). With 
a very large value of - D,,, the difference in S-concentraation between the up- and 
downgoing fingers in figure 4(a) can be the reverse of that shown. When both D,, 
and D,, are non-zero, the occurrence of fingers is assisted by negative values of D21 
and positive values of D,,, as can be seen in figure 2 (c). Note that the flux of S in 
the case of figure 4 (a)  is downgradient as drawn, but can be countergradient for larger 
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( b )  
P -  

FIUURE 4. Sketch of the vertical profiles of UT, /3S and p in the centres of up- and downgoing 
(indicated by the arrows) fingers for a z  > 0 and /?Rz < 0; that is with property distributions 
apparently conducive to the diffusive instability. (a )  has D,, = 0, and D,, (<  0) satisfies (40); ( b )  
has D,, = 0, and D,, (> 0) satisfies (41). With a stronger cross-diffusion effect the difference in 
S-concentration between the up- and downgoing fingers in ( a )  can be the reverse of that shown. 

values of - Dz1. The flux of T in the case of figure 4 ( b )  is downgradient just as it is 
in normal double-diffusive convection, even though the fingers are now caused by the 
cross-diffusion coefficient D12. 

Perhaps the most questionable assumption in this model of finite-amplitude fingers 
is the sinusoidal variation of both T and X in the horizontal directions x and y. I n  
their numerical model of salt fingers, Piacsek & Toomre (1980) have shown that while 
the vertical velocity and T-profiles may be well described by a simple sinusoid, the 
S-profiles through the fingers have sharper gradients between the fingers than does 
a simple sinusoid. From a consideration of the magnitude of the fluxes between the 
fingers, these sharper gradients of S would make the cross-diffusion term D,, less 
effective a t  driving fingers, but i t  would make the term D,, more effective. We do 
not, however, imagine this complication to  be too important because of the 
experimental work of Huppert & Manins (1973). They studied the onset of fingers 
a t  a diffusing interface between two solutions of different salts and found that fingers 
first appeared and then remained present when the instability theory indicated that 
they should. If the extra sharpness of the horizontal gradients of S was to  have a 
large influence on the fingers then we should expect that their formation would not 
agree so well with the model. 

4. Diffusion of an initially sharp fluid interface 
Some methods of measuring diffusion coefficients (e.g. the Gouy diffusiometer) 

involve the diffusion of two solutions into each other across an initially sharp 
interface. Some instabilities observed a t  such diffusing interfaces may be due to 
double-diffusive convection. For example Vitagliano, Sartorio & Constantino (1974) 
used aqueous solutions of the salts NaCl and NH,Cl which were set up in the 
‘diffusive ’ sense, that is, with the faster-diffusing component more concentrated in 
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the upper solution and with the slower-diffusing component more concentrated in the 
lower solution. 

Huppert & Manins (1973) have analysed the diffusion of two properties from an 
initially sharp interface when the layer properties are distributed in the finger sense 
and they obtained the conditions for the formation of fingers. We are most interested 
in this section to examine cases where fingers may occur even though the overall 
distribution of properties is not favourable to them. The extra factor we consider is 
the cross-diffusion process which can significantly affect the gradients of properties 
a t  a diffusing interface. 

The solution for the diffusion of two species T and S from an initially sharp 
boundary with both cross-diffusion terms has been derived by Fujita & Gosting 
(1956), but unfortunately i t  is analytically very messy to write down, and for this 
reason we prefer to discuss the simpler cases where only one of the cross-diffusion 
coefficients is non-zero. 

We consider first the case where D,,  = 0. The initial T -  and S-concentrations are 
greater in the lower layer than in the upper layer by the amounts AT and AS 
respectively. The diffusion equations are 

The solution to (42) is 
, A T 2  

T(w = z/2(Dll t )z)  = eC2dr = -4AT erf (v), (44)  

and by using the transformation of the variables z and t in (43) to zt-4 we can readily 
find the solution for S as 

D A T 7  
S ( w  = z/2(D2,t)2) = A--{erf (w)-erf (7+w)}-+ASerf (w). (45) D,, 2 1 -7  

From these expressions we obtain the ratio of the vertical gradients of S and T a t  
z = O a s  PS, -,PAS PD,, 7-4-1 

T-. - - 7  2 - - -  - 
E T ,  EAT ED,, 1 - 7  (46) 

It is readily shown that for AT > 0, AS > 0 the most favourable depth z for the 
occurrence of fingers is a t  z = 0. Notice from (46)  that the vertical gradient of S will 
be reversed at z = 0 (i.e. 8, > 0) if 

- PAS<PD, l  -- 7 (1 - 7". 
EAT ED,, 1 - T 

Figure 5 ( a )  shows the vertical profile of S as a function of w = z/2(D2,t)4 for AS = 0 
(i.e. no initial difference between the S-concentrations of the two layers) for two 
different values of T, namely 7 = & and B. Figure 5 ( b )  shows the vertical profiles when 
AS is just large enough to  make S, zero at z = 0. 

To obtain a criterion for the onset of fingers a t  a diffusing interface we use the 
expression (46) for the magnitude of the S-gradient in the inequality (38) ,  giving 

> 7 2 -  D,, = 0. 
ED,, 1 - 7 2  

( 4 7 )  
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FIGURE 5 .  Profiles of the S-concentration a t  a diffusing interface with D,, = 0. The vertical 
coordinate 20 is equal to z/2(D2, t ) : ,  and the reference S value Sr is ~ A ~ ( ~ , l / D , , ) ~ / ( ~  - T ) .  (a) has 
the initial contrast A S  in S-concentrations between the two layers equal to zero; (b )  has a positive 
A S  just large enough to give a zero vertical S-gradient a t  z = 0. 
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Now if S,  = 0 at z = 0 (as in figure 5(b), fingers will occur if /3D,,/aD,, > 1, whereas 
if AS = 0 (as in figure 5 a )  then the criterion is PDzl/aD,, > d ( 1 - ~ ) / ( 1 - - 7 t ) .  This 
condition is much easier to fulfil as 71( 1 - 7)/(  1 - 76) is approximately 0.5 for 7 = 5 and 
is approximately 0.1 for 7 = &. It is the reversal of the S-gradient in the centre of 
the interface, caused by the cross-diffusion coefficient D,,, which makes the occurrence 
of fingers more likely by the above factor. 

It is interesting to calculate the density gradient in a diffusing interface. Hydro- 
dynamic static stability requires pz to be negative. From (44) and (45) we obtain 

aAT 1 “D,, (1-7)  aAT ’ (48) P z  = -.Jl PDzlci(l-7i)] 7-i1BL\x 
~ _ _ _ _  
7r4 2(Dl,t)i 

and so a statically &stable density gradient is obtained if 

It is more difficult to satisfy this inequality than to get fingers (see (47)). For example, 
if AS is zero there is a ratio of approximately 7 between t,he right-hand sides of (47) 
and (49). The above inequality can also be used to determine when an unstable 
density gradient can occur in the absence of any cross-diffusion effects in the ‘normal ’ 
salt-fingering situation where AT > 0, AS < 0.  The condition for a density reversal 
is 

aAT 
P -  PAS 

R = 1-1 < 7-4, D,, = 0, D,, = 0 ,  

whereas fingers can form a t  such an interface if (from (47)) 

aAT 
P -  PAS 

R = 1-1 < 7-f,  D,, = 0, D,, = 0. 

This last result was first derived by Huppert & Manins (1973). These two inequalities 
show for example that if 7 = 8 fingers can form at the diffusing interface if Rp < 715, 
and a density reversal can occur a t  the centre of the interface if Rp < 9. Here again 
the condition for a statically unstable density gradient to develop is more 
restrictive than the condition for fingers to form. Huppert & Manins (1973) found 
good agreement between (51) and the observed formation of fingers at diffusing 
interfaces, and experience with double-diffusive convection suggests that the lower 
the value of Rp the more active is the convection. Hence we dismiss the formation 
of a statically unstable density gradient as physically irrelevant both with and 
without cross-diffusion effects, since fingers will form instea,d and so modify the purely 
vertical diffusion process we have considered in arriving a t  (49) and (50). 

So far in this section we have considered the cross-diffusion case with D,, = 0. We 
now outline the results when D,, is non-zero and D,, = 0.  The ratio of the T -  and 
S-gradients in the centre of the diffusing gradients is given by 

aT, ,aAT aDl,1-7i 
- = 7 2 p - p -  
PS, PAS pDll 1 - 7 ’  

and fingers can form if (from 39) 
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For small values of aAT//3AS the T-gradient can be reversed (i.e. T,  > 0, see (52)) 
and this facilitates the formation of fingers a t  such an interface. This result is quite 
surprising in that the gradients of both T and S are just the reverse of those required 
for normal finger convection, that is, they are in the sense normally associated with 
the 'diffusive' instability. So long as D,, is large enough to satisfy the inequality (53), 
we have demonstrated (mathematically) the possibility of fingers with 8, < 0 and T,  
either positive or negative. The physical mechanism behind this fingering motion in 
apparently inhospitable property gradients is explained in $3  of this paper in 
connection with figure 4 ( b ) .  

Owing to the unfortunate complexity of the unwieldy expressions for T,  and S, in 
the case with two cross-diffusion terms we cannot come to  any general quantitative 
conclusions regarding the formation of fingers a t  a diffusing interface in this situation. 
By manipulating the algebra a little for the case AS = 0 we were able to show that 
positive values of D,, and D,, lead to S,  > 0 at  x = 0, and this will assist in the 
formation of fingers a t  the interface with T,  < 0 (see (17) ) .  

In  the special cases where either D,, or D,, is zero, similar analyses to the above 
can be used to obtain the conditions under which fingers can occur a t  a diffusing 
interface when AT < 0 and A S  > 0, that is, when the overall property differences 
between the layers is in the ostensibly diffusive stratification. For the sake of brevity 
we will not go into this case here. 

5. Discussion and conclusions 
Our initial interest in the influence of coupled diffusion on double-diffusive 

convection was sparked by the paper of Preston et al. (1980), where fingering motion 
was observed in solutions of macromolecules in which the distributions of the 
polymers were not obviously conducive to double-diffusive convection. In  some of 
these experiments, fingers were observed to grow between an upper aqueous solution 
of dextran and a lower more concentrated aqueous solution of dextran to which 
sorbitol had been added. We suggest that  the mechanism of formation of fingers in 
this situation may rely on the cross-diffusion fluxes of dextran and sorbitol in the 
presence of gradients of both properties. I n  the absence of any values for the 
cross-diffusion coefficients D,, and D,, in this case i t  is not possible to assert 
unequivocally that this process is the cause of the fingering and it is hoped that this 
work may serve as a catalyst to encourage the measurements of such coefficients. 

The fluxes of properties across a normal double-diffusive interface are expected to 
vary as the one-third power of g, the gravitational acceleration. Stern (1975) (9 11.4) 
derives this power law as a result of his collective instability process acting on fingers 
resulting from the fastest-growing linear instability. The same power law is usually 
derived by a variation of the scaling argument used for the Rayleigh-BBnard 
convection geometry that for high Rayleigh numbers the heat flux should bc 
independent of the vertical length scale of the convecting region. Turner (1973, 
equation (8.3.2)) expresses this result in non-dimensional form. This dependence on 
g has never before been tested and some experiments performed in a centrifuge by 
Preston et al. (1980) have shown that the fluxes vary as go.'. It remains to be proven 
of course whether their experiments with macromolecules were double-diffusive in 
character, but i t  is encouraging to note that a rather small power (i) is also expected 
with double-diffusive convection. 

As an alternative to finding the size of the cross-diffusion coefficients in  the 
water-dextran-sorbitol system, we have endeavoured to find simpler substancw 
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(salts and small-molecular-weight organic compounds) that  exhibit large cross- 
diffusion fluxes. Some aqueous solutions of salts a t  low temperatures come close to 
the condition PD21/aD,, x 1 (e.g. NaCl (Caldwell 1974), where D21/D,2 is actually 
the Soret coefficient multiplied by S( 1 -#), where S is the concentration of the salt). 
In  conducting experiments with NaCl a t  temperatures close to  0 O C  we encountered 
two problems which could not easily be overcome. The heat conduction through the 
sidewalls of the experimental tank, though kept small with polystyrene sheeting, was 
large enough to cause mixing at the interface between the lower and upper fluid layers. 
The other problem was that when we saw fingers develop a t  the interface we could 
not determine whether they were caused by the cross-diffusion effect or by small 
amounts of evaporation of water from the upper layer causing its salinity to increase 
sufficiently (an increase of 3 x 10-4%0 would suffice) to  cause fingers in the normal 
manner. Cussler (1976) provides a list of references of measurements of all four ternary 
diffusion coefficients. On looking these up we found tha,t one of the few substances 
to exhibit large cross-diffusion fluxes was another polymer, polystyrene, which had 
a molecular weight of 190000. Cussler & Lightfoot (1965) used the polystyrene- 
toluenecyclohexane combination and found values of D,,/D,,  < - 1. They also give 
a simple argument which purports to explain the large cross-diffusion effect in terms 
of the chemical potential as a function of temperature E x  the two binary mixtures, 
polystyrene-toluene and polystyrene-cyclohexane. 

I n  order to understand the mechanism of finger formation in situations such as 
those discussed by Preston et al. (1980) we suggest that  the next logical step is to 
endeavour to measure the cross-diffusion fluxes for some of these long-chain polymers 
in the presence of each other. 

In  summary, we have concentrated in this paper on the formation of fingers due 
to cross-diffusion fluxes when the vertical distributions of the two solutes T and X 
are apparently unfavourable for double-diffusive convection. In  particular we have 
considered the case where both T and S are stably stratified and have shown that 
fingers can form with sufficiently large and positive values of the cross-diffusion 
coefficients D,, and D21. The finite-amplitude finger model and figures 3 and 4 show 
the physical mechanism involved in the maintenance of steady fingering motions in 
these apparently unfavourable mean vertical property gradients. We have also shown 
that the mutual diffusion of properties a t  a horizontal interface can cause property 
gradients that  favour the formation of fingers. 

Sincere thanks are due to Professor J. Stewart Turner who provided continual 
enthusiasm and advice. Enlightening conversations with Drs B. A. Pailthorpe, R. 
Mills and L. A. Woolf are also gratefully acknowledged. 
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